Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology
نویسندگان
چکیده
Autism spectrum disorders (ASDs) are complex and heterogeneous developmental disabilities affecting an ever-increasing number of children worldwide. The diverse manifestations and complex, largely genetic aetiology of ASDs pose a major challenge to the identification of unifying neuropathological features. Here we describe the neurodevelopmental defects in mice that carry deleterious alleles of the Wdfy3 gene, recently recognized as causative in ASDs. Loss of Wdfy3 leads to a regionally enlarged cerebral cortex resembling early brain overgrowth described in many children on the autism spectrum. In addition, affected mouse mutants display migration defects of cortical projection neurons, a recognized cause of epilepsy, which is significantly comorbid with autism. Our analysis of affected mouse mutants defines an important role for Wdfy3 in regulating neural progenitor divisions and neural migration in the developing brain. Furthermore, Wdfy3 is essential for cerebral expansion and functional organization while its loss-of-function results in pathological changes characteristic of ASDs.
منابع مشابه
Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.
Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into t...
متن کاملAge dependent forebrain structural changes in mice deficient in the autism associated gene Met tyrosine kinase☆
The MET tyrosine kinase has been identified as a susceptibility gene in patients with autism spectrum disorders. MET is expressed in the forebrain during prenatal and postnatal development. After birth, MET participates in dendritic outgrowth and circuit formation. Alterations in neuronal development, particularly in the cerebral cortex, may contribute to the pathology of developmental disorder...
متن کاملThe 16p11.2 deletion mouse model of autism exhibits altered cortical progenitor proliferation and brain cytoarchitecture linked to the ERK MAPK pathway.
Autism spectrum disorders are complex, highly heritable neurodevelopmental disorders affecting ∼1 in 100 children. Copy number variations of human chromosomal region 16p11.2 are genetically linked to 1% of autism-related disorders. This interval contains the MAPK3 gene, which encodes the MAP kinase, ERK1. Mutations in upstream elements regulating the ERK pathway are genetically linked to autism...
متن کاملAlterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice
Objective(s): Epidemiological and biochemical studies conducted over the past two decades have established a strong link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). However, the exact mechanisms through which aberrations in insulin signaling associated with T2DM contribute to cognitive decline are not yet known. Materials and Methods: In an effort to explore possible m...
متن کاملThe enhancing effect of electromagnetic field on the expression of Oligodendrocyte transcription factor 1 and 2 (Olig1/2) in the mice cerebral cortex
Olig1 and Olig2, two transcription factors, play regulatory function in the differentiation and specification of oligodendrocyte progenitor cells (OPCs). In this study the effects of electromagnetic fields (EMF) on total protein concentration ( TPC ) and Olig1 and Olig2 expression in the cerebral cortex of mouse was examined. Twenty-one Balb/c mice were separated into three groups: control, EMF...
متن کامل